Area Distribution and Scaling Function for Punctured Polygons

نویسندگان

  • Christoph Richard
  • Iwan Jensen
  • Anthony J. Guttmann
چکیده

Punctured polygons are polygons with internal holes which are also polygons. The external and internal polygons are of the same type, and they are mutually as well as self-avoiding. Based on an assumption about the limiting area distribution for unpunctured polygons, we rigorously analyse the effect of a finite number of punctures on the limiting area distribution in a uniform ensemble, where punctured polygons with equal perimeter have the same probability of occurrence. Our analysis leads to conjectures about the scaling behaviour of the models. We also analyse exact enumeration data. For staircase polygons with punctures of fixed size, this yields explicit expressions for the generating functions of the first few area moments. For staircase polygons with punctures of arbitrary size, a careful numerical analysis yields very accurate estimates for the area moments. Interestingly, we find that the leading correction term for each area moment is proportional to the corresponding area moment with one less puncture. We finally analyse corresponding quantities for punctured self-avoiding polygons and find agreement with the conjectured formulas to at least 3–4 significant digits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Punctured polygons and polyominoes on the square lattice

We use the finite lattice method to count the number of punctured staircase and selfavoiding polygons with up to three holes on the square lattice. New or radically extended series have been derived for both the perimeter and area generating functions. We show that the critical point is unchanged by a finite number of punctures, and that the critical exponent increases by a fixed amount for eac...

متن کامل

The perimeter generating function of punctured staircase polygons

Using a simple transfer matrix approach we have derived very long series expansions for the perimeter generating function of punctured staircase polygons (staircase polygons with a single internal staircase hole). We find that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of order 8. We perform an analysis of the properties of the differ...

متن کامل

Scaling function for self-avoiding polygons

Exactly solvable models of planar polygons, weighted by perimeter and area, have deepened our understanding of the critical behaviour of polygon models in recent years. Based on these results, we derive a conjecture for the exact form of the critical scaling function for planar self-avoiding polygons. The validity of this conjecture was recently tested numerically using exact enumeration data f...

متن کامل

Scaling function and universal amplitude combinations for self-avoiding polygons

We analyse new data for self-avoiding polygons (SAPs), on the square and triangular lattices, enumerated by both perimeter and area, providing evidence that the scaling function is the logarithm of an Airy function. The results imply universal amplitude combinations for all area moments and suggest that rooted SAPs may satisfy a q-algebraic functional equation. PACS numbers: 05.50+q, 02.10.AB, ...

متن کامل

Exact perimeter generating function for a model of punctured staircase polygons

We have derived the perimeter generating function of a model of punctured staircase polygons in which the internal staircase polygon is rotated by a 90° angle with respect to the outer staircase polygon. In one approach we calculated a long series expansion for the problem and found that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008